1	(a)	State, with a reason, whether or not protons and neutrons are fundamental particles.					
			[1]				
	(b)	State two fundamental particles that can be classified as leptons. [1]					
	(c)						
		(i)	The isotope of potassium-40 is a beta-minus emitter.				
		Complete the following decay equation for $^{40}_{19}$ K.					
			$^{40}_{19}K \rightarrow$ Ca + + [2]				
		(ii)	Explain why energy is released when a single nucleus of potassium-40 decays.				
			[2]				
	((iii)	A banana contains $4.5 \times 10^{-4} \text{kg}$ of potassium. About 0.012% of the mass of potassium in the banana has the unstable isotope of potassium-40. This isotope of potassium-40 has a half-life of $4.2 \times 10^{16} \text{s}$. The molar mass of potassium-40 is 0.040kg mol^{-1}.				
		Calculate the activity from this banana.					

2	(a)	-	plain how the experiments on the scattering of alpha-particles by a metal foil provide dence for the nuclear model of the atom.
Ø		In y	our answer, you should make clear how your conclusions link with the observations.
			[3
(b) Fig. 5.1 shows an alpha-particle (4_2 He) of kinetic energy 8.0 MeV moving di nucleus of aluminium-27 (${}^{27}_{13}$ AI), initially at rest.			
		a	aluminium nucleus
			Fig. 5.1
(i)			The alpha-particle comes to rest instantaneously a short distance away from the aluminium nucleus. It then reverses its direction of travel. Describe and explain the motion of the aluminium nucleus at the instant the alpha-particle is at rest.
			[2

(ii)	Calculate the initial speed of the alpha-particle.
	mass of alpha-particle = $6.6 \times 10^{-27} \text{kg}$
	speed = ms ⁻¹ [2]
(iii)	The electric force experienced by the alpha-particle when it is close to the aluminium nucleus is 270 N. Calculate the separation <i>r</i> between the alpha-particle and the aluminium nucleus when the alpha-particle experiences this force.
	r = m [3]
(iv)	Consider the situation where the alpha-particle travels much closer to the aluminium nucleus than in (b)(iii) .
	Discuss how the strong nuclear force may affect the resultant force on the alpha-particle
	[2]

	3 (a) Explain what is meant by the <i>binding energy</i> of a
	nucleus.
	[1]
(b)	The fusion of protons occurs in a star when the temperature within the core is greater than about 10^7 K. It takes the fusion of 4 protons to form a helium-4 (4_2 He) nucleus. In this process, known as the proton–proton cycle, energy is released.
	The net energy released in producing a single helium-4 nucleus is 4.53×10^{-12} J. Calculate the binding energy per nucleon of the helium-4 nucleus.
	binding energy per nucleon = J [1]
(c)	The fusion of helium nuclei to make heavier elements occurs in red giants at temperatures above $10^8\mathrm{K}.$
	Explain why fusion of helium requires higher temperatures than the fusion of hydrogen (protons).
	[2]
(d)	Estimate the mean speed of helium nuclei at a temperature of 10 ⁸ K.
	mass of helium nucleus = $6.6 \times 10^{-27} \text{kg}$
	speed = ms ⁻¹ [2]

4	(a)	Dec	uterium (² ₁ H) and tritium (³ H) are isotopes of hydrogen.					
		(i)	State two features common to all isotopes of hydrogen.					
		(ii)	Explain why the total mass of the individual nucleons of a deuterium nucleus is differen					
			from the mass of the deuterium nucleus.					
			ro					
	(h)	Λfι	sion reaction between two pueloi is shown below.					
	(D)	AIU	sion reaction between two nuclei is shown below. ${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n$					
		Δn						
	A neutron inside a nucleus is stable. However, a 'free' neutron, when outside undergoes beta decay with a half-life of about 11 minutes.							
		(i)	Complete the decay equation below for a free neutron.					
			${}^{1}_{0}$ n \rightarrow + ${}^{0}_{-1}$ e +					
		(ii)	Explain what is meant by the half-life of a free neutron.					
			[1					

(c)	For the fusion reaction to occur the separation between the deuterium and tritium nuclei must be less than 10 ⁻¹⁴ m. This means that the average kinetic energy of these hydrogen nucle needs to be about 70 keV. The energy released by the fusion reaction is 18 MeV.					
	(i)	Calculate the repulsive electrical force between the deuterium and tritium nuclei at a separation of $10^{-14}\mathrm{m}$.				
		force = N [2]				
	(ii)	Assume that a mixture of these hydrogen nuclei behaves as an ideal gas.				
		Estimate the temperature of the mixture of nuclei required for this fusion reaction.				
		temperature = K [3]				
	(iii)	In practice, fusion occurs at a much lower temperature. Suggest a reason why.				
		[1]				

(iv)	Calculate the	change	in mass	in a	sinale	fusion	reaction.

change in mass = kg [2]

(v) Fig. 3.1 shows the variation of probability of fusion reaction with temperature *T* for deuterium and tritium and for deuterium and helium.

Fig. 3.1

and helium.	

Suggest why the probability of reaction at a given temperature is smaller for deuterium